
THE CENTRAL LIMIT THEOREM FOR GEODESIC 

FLOWS ON n-DIMENSIONAL MANIFOLDS OF 

NEGATIVE CURVATURE 

BY 

M. R A T N E R  

ABSTRACT 

In this paper we prove a central limit theorem for special flows built over shifts 
which satisfy a uniform mixing of type yn~, 0 < y < 1, ct > 0. The function 
defining the special flow is assumed to be continuous with modulus of con- 

tinuity of type plto#(xi , x2)l p , 0 < p < 1, fl > 0, and d is the natural 
metric on sequence space. Geodesic flows on compact manifolds of negative 
curvature are isomorphic to special flows of this kind. 

DEFINITION. L e t f b e  a measurable, bounded real function, defined on a Lebesgue 

space M with measure m. f is said to satisfy the central limit theorem relative to a 

measurable ergodic flow {S f} in M if there exists a constant a > 0 such that for 

any - o o  < ~ < o o  

(1) lira m x: ( f ( S ' x ) - f ) d T / a ~ / - i <  ~ -- e - ~ ' d u  

where f =  j 'Mf(x)dm.  

An analogous definition holds for automorphisms; the only change is to replace 

the integral by a sum. 

Sinai [12-] proved the central limit theorem for a wide class of  functions for the 

case of  a geodesic flow in a space of linear elements of  a compact manifold M of 

constant negative curvature. The study of this class in 1-12] makes essential use 

of  the properties of  M as a homogeneous space and of the representation of its 

group of motions. These methods do not apply to the case of  varying curvature. 

This case was considered for three-dimensional compact manifolds in 19]. The 
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central limit theorem (clt) was proved there for arbitrary Anosov flows (which we 

shall henceforth call C-flows) of class C 2 relative to a smooth invariant measure 

(see [13], [10], [14]), which is simply invariant Riemannian volume in the case of 

geodesic flows. 

In this paper we prove the clt for transitive Anosov flows of class C 2 on compacts 

Riemannian manifolds M of any dimension. The proof makes essential use of a 

special representation of a flow {T t} obtained by means of a Markov partition 

(see [13], [2], [3], [11]). This partition determines a matrix n = [] n o II, rclJ = O, 1, 

of order r, such that for some integer s > 0 the elements of the matrix ns are 

positive. Using this matrix, we then construct the space X,  = X c  {1, 2, ..., r} z of 

sequences x = {xi}i~_oo, nx,.x,+~ = 1, with the metric 

p(x ' , x" )  = ~, 2-1%(x~,x~'), where 

" 

t # Xi  = Xi  
e ( x .  x i) = 

! I t  xi # x~. 

The space X is the domain of the shift automorphism q~: (~bx)i = x~_ 1 (see [8]). 

The Markov partition enables us to define: (i) a continuous positive function l(x) 

on X satisfying a Holder condition; (ii) a special flow S t acting in the space W = 

(X, l) = {(x, y): x ~ X, 0 < y </(x) ,  (x, l(x)) = (~x,  0)} with the direct product 

metric, so that for t < inf , ,  x l(x), 

( ( x , y  + O t < l ( x ) - -  y 
St(x, Y) 

((~px, t + y - l(x)) t > l(x) - y 

and S t is uniquely determined for other values of t by the condition that it be a 

one-parameter transformation group; (iii) a continuous mapping 0: W--, M such 

that ~ S t =  Till. 
Now, if v is an St-invariant Borel measure in W such that the set on which ~, 

fails to be one-to-one has v-measure 0, then the flows S t in (W, r) and T t in 

( M , O * v )  are isomorphic (for a Borel set A c M,  ~ .  v(A) = v(O -1A)). 

This was precisely the method used by Sinai in [14] to construct invariant 

Gibbs measures for transitive C-flows of class C 2. A Gibbs measure v in W induces 

a ~b-invariant measure/~ on X such that dv = (d/~ x dt) (1/l), where I = fx l (x)d~ 

and the shift ~b in (X,  ~) is a K-automorphism with a strong mixing of type Y~.~, 

0 < ? < 1, e > 0 (see [8], [10], [14]), that is, for any sets BIE..CZ~+.,B~ n B ~  

= q~ (i # j )  A e.,cdk~, 
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(2) Z [ ~(B,/A) - t,(B,) [ < C ~'. 
i 

.//~ is the a-algebra of the sets measurable with respect to {x~[~ =.} and C > 0 is a 

constant. The function l is assumed to be of class Y.,~, that is, if (x')~ = (x")i for 

l il z n, then 

I I(~') - l(x") [ = A p "~ 

for constants A = A(I) > O, 0 < p < 1, x > O. 

Our main result is the clt for a wide range of continuous functions in W relative 

to the flow S t in (W, v) with condition (2) and a function l(x) e Yp.~. 

Since smooth invariant measures for transitive C-flows of class C z are Gibbs 

measures 114], the main result implies the clt for such measures, in particular, the 

clt for geodesic flow on manifolds of negative curvature relative to invariant 

Riemannian volume. The class of functions for which the clt holds coincides with 

the class of functions found in 1-11] for constant curvature. 

1. Auxi l iary  l e m m a s  

Let q~ be the shift automorphism in (X, #) with condition (2). 

LEMMA 1.1. Let F ETp,K on X and DnF ~ oo as N ~ 0% where 

= f x  F(x)d#  = F E(F) . 

Then DNF ,~ avN, av > O, and F satisfies the clt; moreover, a = x/--~ in (1). 

PgOOF. For x e X, we set 

a~_k(x) = (x' ~ x :  4 =  ~,li[--- k} 

and denote 

Fk(x ) = fak_k(X) F(x')dPAk-k(x) 

where the integration is with respect to the conditional measure induced by # on 

hk_k(X). Since F e Tp,~, it follows that in the L2(X)-norm 

(3) II F(x)  - Fk(X)I1 <AP ~ 

It then follows from [6] that when condition (2) holds, DNF ~ a r N  for ar  > 0, as 

N ~ 0% and the function F satisfies the clt. �9 
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Likewise it follows from [6] (see also [ i])  that if DkFtk~l ~ Ck as k ~ oo for 

0 < 8<  1, where C > 0 is a constant, then for some ~ = ~(6) > 0: 

k 

g (Ft : ] (~ -~ x ) - F )  
(4) [E (exp{iz '=~ l ) -  exp{- �89 [ < l / k "  

for z e  [ - k ' ,k '] .  

The question of conditions on F under which D~F ~ a~,N, a~ > 0 is studied 

in [7]. (According to our assumptions, if F e Yp,~ this is equivalent to DNF ~ oo 

as N ~ oo,) 

Let U be the unitary operator in L2~(X) adjoint to qk Every function F ~ L~(X) 

has an absolutely continuous spectral function relative to U. In this case, either 

DNF ~ oo or DNF < c < oo. Let rr(p) be the spectral density of F. It was shown in 

[7] that if (i) rr(p) is continuous at p = 0 and (ii) rp(0)= ro > 0 ,  then 

DNF ,'~ 2rCro N as N ~ oo. 

It follows from (3) and condition (2) that the correlation function of F eTp. ,  

decreases to zero at a rate of type p~' ;  0 < p~ < 1, cq > 0. In this case [7] conditions 

(i)-(ii) are surely satisfied when the equation UG - G = F - F has no solutions 

in L~(x). But if there is a solution in L~(X), then the variance DN(F) is bounded. 

Now let I e T:,, be a positive function on X and S' the special flow in (W, v) 

constructed over (X, #) with the aid of the function l, dv = (dl~ x dt)/[. It is 

assumed that S t is a K-flow in (W, v) (this is true in the case of Gibbs measures of 

transitive C-flows). It then follows from [5] that the equation U G -  G = I -  l 

has no solutions in L2,(X), since the existence of such a solution would imply that 

the spectrum of the flow S t has a discrete component. Thus I satisfies the clt. 

LEMMA 1.2. Let F ~  ~,~, K ~  Yp,,,~ be continuous on X and D~F,.~ arn 

(a r > 0). Then 
II  

[ ( ~, F ( d p - ' x ) - n F ~  \ 

(5) lim E{K(x)exp~iz '=~ - - -  [ J = . C e x p ( - � 8 9  

The  conver#ence is uni form in z on every f ini te interval. 

PROOF. We write the sum in (5) as 

[n~-]-  1 n 

E (F(d~-tx) - F)  + ~,. (F(dp-tx) - F)  = J~ + J2. 
l = 0  i = [ n  "a'] 

Since F is bounded on X, it follows that for some constant C~ > 0 
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Therefore. 

where r', is independent of  x and r~ ~ 0 as n --* 0% uniformly in z on every finite 

interval. 

Let 0 < 6  < �88 consider the function Ft,,](x ). Then, setting Ht,~j(x ) = 

F(x) - Ft,,~(x), we conclude from (3) that for all x e X 

I Ht.,](x)I < Ap .'~. 
Consider the sum 

~ .  (Ft.,](~-~x) J2 = (F(~b-ix) - 1:) = - 1:) + 
l=n�88 i-= 

where 

Then 

+ ~. Ht..](~P-ix) = Ix +12, 
l = n i "  

12 ] <Anp.  6. 

" is independent of  x and r~--* 0 as n ~ 0% uniformly in z on every where r, 

finite interval. By (3), D,(Ft.,3) ~ ntr~ as n ~ oo. Therefore, 

lim E(K(x)exp {iz ~, (Ft,,l(c~-'x) - _g)/x/a-~}) 
n-~oo 1 = I  

= lim E Kr..l(X) exp iz - F)[  . 
n " * ~  l ~ 

It follows from condtion (2) that  

�9 - - < ,." - R E  exp izi  

iz I~ 
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" -+ 0 as n --+ oo uniformly in z on every finite interval. The assertion now where r,  

follows easily from (4). �9 

COROLLARY 1.3. Let ReT#.~, Qr Tp,~l be continuous onX and D,R~  trjln, 

tr R > 0 ,  D,Q~,aQn, o Q > 0 .  In Lemma 1.2, set K(x)= l(x) (the special 

representation function) and F(x) = ziR(x) + z2Q(x), where zl, z2 are arbitrary 

real numbers. Then, setting z = 1 in (5), we oet 

l im (l]l)E(l(x)exp{izt  ~ (R(~-ix)-1~)ix/n+iz2 ~ (Q(dp-ix)-~)/x/n })  
n ~  i= l  lI=l 

exp { - �89 all + 2bilo z l '  z2 + z~trQ)} (6)  = 

where 

{ z )/} b~Q=lim E -2i)- (Q(~-~x)-~) n .  
n-,.+ i t= l  

Indeed, if z 1 and z 2 are such that Dn(zIR + z2Q ) ~, dn, d > 0, then (6) follows 

at once from (5). But if zl and z2 are such that the variance D,(ztR + z2Q ) is 

bounded as n + oo, this means that the limit distribution is degenerate; but then 
2 also zttrlt + 2bRQztz2 + z2aQ = 0, and so (6) remains valid. 

If  we let /x z denote the measure on X defined by d/x+= (l(x) / l)dlx, then (6) 

means that the two-dimensional clt is satisfied with respect to the measure kq. 

We now consider the special flow S' in (W,v) = (X,/x,/). We shall adopt the 

convention that lower case Latin letters denote functions on W, upper case 

Latin letters denote functions on X. If  f (w) and F(x) are functions on (W, v) and 

(X, kt), respectively, then N(f) and E(F) will denote their means: 

f =  N ( f ) =  f+f(w)dv; ,~= E ( F ) :  fxF(x)dg. 
For w E W, we write w = (x, y), where x e X and 0 < y < l(x). With any function 

f(w) on W we associate a function F(x) on X as follows: 

l tx) 

F ( x ) =  Jo f(x,y)dy. 

Let V be the infinitesimal operator corresponding to the group {It} of unitary 

operators adjoint to the flow S t, that is, Vt = exp (itV). L e t f e  L2v(W), and consider 

the following equations: in L2,(W), 

(7) Vh(w) = f(w) - f 

and in L~(X), 
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(8) UH(x) - H(x) = F(x) - (Pfl)l(x). 

It is obvious that f = F/L UH(x) = H(ckx). 

LE~rMA 1.4. Equation (7) is solvable i f f  equation (8) is solvable. 

PROOF. Assume that h(w) ~ LZ, rW) satisfies equation (7). Then 

t(x)Vh(x, y)dy = ( f (x ,  y) - f ) d y  = F(x) - (F/l)l(x). 

It is readily shown that the following formula is valid in LZ,(W): 

fo t (x)  . _  
Vh(x, y)ay = h(x, l(x)) - h(x, 0); h(x, O) ~ LZa(X). 

But h(x, l(x)) = h(ckx, O) = Uh(x, 0). Therefore the function n(x)  = h(x, O) e L~(X) 

satisfies equation (8). 

Now let H(x) satisfy equation t8), that is, 

i. l(x) 

vt / (x )  - n (x )  = Jo (f(x, y) -y)•y, tt(x) ~ L~(X). 

Consider the function 

f h(x, y) = H(x) + ( f (x ,  z) - f )dz .  

Then h(x, l(x)) = h(c~x, 0). Therefore h(x, y) = h(w) e L~ (W) and h(w) satisfies 

equation (7). �9 

2. The clt for the special flow 

It is assumed here that l ~ Yp.~ and Dnl ~ oln, ot > 0 (as shown above, this is 

the case, for example, if S t is a K-flow in (W, v)). Then l satisfies the clt. 

We shall say that f ~  Tp,~ on W if 
/ .  t (x)  

F(x) = Jo f ( x ,  y) dy~  Yo., on X. 

TnEOgEM 2.1 Let f eYp., be continuous on W and suppose that equation (7) 

has no solution in L2v(I4O. Then f satisfies the clt relative to S t, and moreover 

o 2 = (2~/ l ) r r l . ,~_o ,a~tc , ) (O)  > 0 

in (1), where ra(P ) is the spectral density of G. 

PROOF. Since P(x) = F(x) - (F/l)  l(x)~ rp., it follows from Lemma 1.4 that 
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D,(ff)~ avn as n ~ 0% where av = 2nrv(O) > O. Then, by Lemma 1.1 ff satisfies 

the clt relative to r in (X,/~). 

Define a function n(t, x) by 

n(t.x) n(t ,x) + 1 

E l(r  < t <= • l(r 
1 = 0  I = 0  

In other words, n(t, x) is the number of times the trajectory of the flow S t, issuing 

from x in the negative direction, hits X during time t. Since l(x) satisfies the clt, 
one easily infers (see, for example, [4]) that for any fixed z, - oo < z < 0% 

lira I~ x: z - e-~" du. 
,,,,Y(1) 

For w = (x, y), we denote 

B(t,x) = (fof(S-'(x,O))du - tf )/x/-[. 

It is clear that 

] a(t, w) -- B(t, x) l < C1 / ~/t- 

where C1 > 0 is a constant independent of w and x. 

Then, for any z in a finite interval [ - K, K],  

1 < CIK 
(9) I N(exp{iza(t 'w)})-  - f  f x  d# fj'~)exp{izB(t,x)}dy I v/-f 

We have 

l fx r"x' - f  d/~)o exp {izB(t, x)}dy = E(l(x) exp {izB(t, x)}) = E~z(ex p {izB(t, x)}). 

Let ~ > 0 be arbitrary and Ak, the set 

A , , =  x s X :  +kex /7<=n( t , x )<-[+(k+l )ex /~  , U Akt~.X.  

Then: 

E(l(x)exp {izB(t,x)}) = k = ~- ~ f(x) exp (izB(t,x)}dg. 

Define L by 
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1 fl e-�89 < g 
x/2- ~ .I>L = 2 "  

Then there exists to such that for all t g t o 

(10) # {x: [n ( t ' x ) - t / l l  } - > L  < e .  

4t 
Consider the sets Akt for [ke I < L. On these sets, we have 

n(t,x) n(t,x) 

E F(dp-'x)- (F/l) E l((o-'x) 
(II) B(t,x) - ~=o ,=o - - ( 1  + b~(x)) 

x/ln(t,x) 

where [ b~(x) l < b~ and b~ -- 0 as t --  o% uniformly in [ke ] < L. 
We denote 

where P(x) = F(x) - (F/I) l(x). 
It follows from (9), (10), and (11) that for z ~ [ - K, K] 

< m e l  

4~ 

(12) 

I f I N(exp{iza(t,w)}) - -[- ~, l(x)exp{izG(t,x)(1 + b;(x))}d# 
k e = - L  d.4kt. 

For x e Akt , 

ClK 
< + e .  

, / r  

we set ~(t,x)= n ( t , x ) - ( t / l +  ks~/-f). We rewrite G(t,x) thus: 

{E,,'+k,,~ .,,,~, }/( )~. 
G(t,x)= Z ff(ek-sx) + Y, ff(d?-' x) l(t / I + kex/--t + ~(t, x) 

i=0 l=[1 / l+ke4~  ]+ l 

Since [~(t, x)[ g e x / / for  x ~ &,, it follows that 

[tll+ ~ , / t  ] 

E i'(~-'x) 
G(t, x) = ,=o (1 + b~(x)) + b2(x) 

[l(t/l+ ka 4 F ) ] ~  

where I b~(~)l ~< eb, b > 0 a constant, I bS(x)] < b ~  0 as t--} m uniformly in 

Ik, I <L. = 
We denote 
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H'(t.x) ([q' +~"q ) / (  _ ) t  = ~(q~ -'x) l ( t / l+  k~ ~ / t )  . 
\ l=O 

Then, in view of (12), we have for z ~ [ -  K, K] 

N(exp {iza(t, w)}) 

(13) 

1 L 

( l(x)exp{izHk(t,x)(1 + b~(x))(l + b~(x))}dp[ 

< C~K+~+eKb. 

, i t  
We now study the sets A~t more closely. They are defined by 

[tll+kegt] [tl l+(k+l)eJt] } 
Akt = x: ]~ l(q~-~x)< t < Z l(q~-lx) �9 

t = 0  i = 0  

The sum on the right is 

[t/l + (k + l ) t~/t  ] [ t/l + kedt ] [t/| + (k + 1)e4t ] 

]~ l((p-tx) = ]~ l((p-ix) + • l(c}-tx) = Ix(x) + I2(x). 
i = 0  i=O l=[t/l +ke~/ t ]+ l 

Since ~b is ergodic, it follows that for 61, 62 > 0 there exists t x > 0 such that for 

t> tx  

(14) p{x: [12(X) --84t- [ --< g4}-51} ~ 1 -g2.  

Let A~t ~ Akt denote the set of all x e Akt for which (14) holds, and set I2(x) 

- s ~ !  = ,x/rgx(x). Then 

c,a+~J,J } 
A'k. = x: t  - ,~/'i'I- ,\/76x(x) ~ Z ICdp-tx) < t 

l = O  

[tll+ke4t ] 

= { x : - ( k + l ) 8  _6x(x)8< ~o (l((p-Zx)-l) - k s  I 

(1/l + k~]~/i') ~ - - ~ I +  ks~/t) ~ (1 ]I+ k~[~/7) ~' 

where [6x(x) I < 5x, g(Ak, | < 52, 51, 5 z ~ 0 as t ~ ~ for [k~ [ ~ L. 

We denote 

[t/l + k~,/t ] 

Z 0@-'x )  - I) 
Ak5 { - ( k  + 1)s ---- X :  < i = 0  

(1/l+ k~147) ~ (t/I+ k~47)~ 

-ko } 
< 

(1/1+ ks/ x/'[ )~ 

" I I It is clear that p(AktOAkt)  ~ 0 as t --* oo uniformly in k8 =< L. 

Thus, we can replace the set Akt in (13) by the set A~t defined by the sum 
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[t l |  + k e4t ] 

~*(t,x) = ~: ( l ( C ' x )  - l)/(t/l+ k~x/?)  ~. 
| = 0  

Consider the pair of random variables (~k(t,x), Hk(t,x)). We know that 

D,(1) ~ a~n and D,(F- (F[l)l)~ arn. Applying Corollary 1.3, we see that for 

fixed k and t --, oo the two-dimensional distribution of the vector (~k(t, X), Hk(t, X)) 
is asymptotically normal with respect to the measure/~, with covariance matrix 

Ot = O" b 

1 

r = - f a t ,  # = b~.p/,/l �9 

Therefore, for fixed e, 

L: (x) exp {izH~(t, x) (1 + b~(x)) (1 + b;(x))}d# - 
k ~ = - L  k 

as t--, oo, where ~(dul, du2) is the two-dimensional normal distribution with 

covariance matrix ( ;  ~ ) a n d  zero expectation. 

It then follows from (13) that 

( ":f_ j lim N(exp {iza(t, w)}) - ~ exp {iz u2} O(dut, du2) 
t--,oo k e = - L  (k+l)e4l~_ul~_-ke,, /1 

__ (1 + K)s 

for z e  E -  K,K]. 
But for e --, 0, L--, o% it is also true that 

L 

I t,~-Lff-tk+l),,q~_ul~_-ke./l 
e x p  {iz u2}CiJ(du l, du2) 

:~ I - exp {iz u2) ~(dut, du2) --* O. 
0o  oo 

Then 

f:f: { lira N(exp{iza(t,w)}) = exp(izu2}e~(dut, du2) = exp - 
It"~ oO aO O0 

But trt' = 2tort'(0). This completes the proof of Theorem 2.1. II 
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REMARK (i). If  V is a Gibbs measure in W, then p is a Gibbs measure in X 

(see [14]) and satisfies condition (2). Under these conditions, if S t is a K-flow in 

(W,v), Theorem 2.1 is the clt for Gibbs measures. 

REMARX (ii). Let T' be a transitive C-flow of class C 2 on (M, v*) with Gibbs 

measure v*. As stated above, T t is a K-flow in (M, v*) (see [14]) and is isomorphic 

to the special flow S t in (W, v) with Gibbs measure v. Moreover, it was shown in 

[14] (see also [11]) that this isomorphism r W ~  M is such that, if h e/'p.~ on 

M, that is, I h(z) - h(z') [ < Cplt~ for some C, x > 0, 0 < p < 1, d the 

metric in M, then the functionf(w) = h(r belongs to Tp,.~ on W with 0 < Pl < 1. 

Thus Theorem 2.1 is the clt for the class of functions h ~ Tp., relative to a transitive 

C-flow of class C 2 on M. For geodesic flows on a manifold of negative curvature, 

this class of functions is precisely that found in [12] for the case of constant 

curvature. 

3. Asymptotic behavior of variance 

We shall show here that for feYp.~ on (W, v) the normalizing factor in the clt 

is simply the variance Dtf , that is, we shall prove Theorem 3.1. 

TrIEOREM 3.1. Let f eYp.~ and suppose that equation (7) has no solution in 

L~(W). Then Dry~ oft  as t ~ oo, where 

of 

In the opposite case the variance 

LEMMA 3.2. Let F e Tp.~ on 

integer r > O, 

27[ 
= T rr(O) > o. 

Dtf is bounded as t ~ oo. 

(X,/0, F =  0, S~-= ~"=lF(~b-~x). For any 

E(S~)2" = f x  [S~(x)]2"dlt < Crn" 

where C, > 0 is a constant depending only on r. 

PROOF. We confine ourselves to the case r = 3. For other values of r the proof 

is analogous. 

We have 

(15)  (s706 = E 
kl,.".k6 

where k~, j = 1,. . . ,6, take values from 1 to 

i = (il, "", i6 )  be two sextuples of integers, and set 

E(F(dp-k'x)... F(c~-k6X)) 

n. Let k = (k l , . . . ,  k6) and 
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e(k,i) = max([ k , -  il ],..., [ k6- i61). 
Let A denote the set of sextuples (kl, .",  k6) = k, 1 ___ k~ ~ n, such that for any 

k~ there exists kj = kt for somej  # I. Then the sum in (15) can be written 

(16) E(S~) 6 - -  2; + Z • + . . . .  
k s A  k:l~_e(k,A)62 + "'" + k:2*~_e(k,A)S_2 I+1 

In any sextuple k in the ith sum, there exists kj, 1 < j < 6, such that I k j -  kt[ > 2 

for all l # j.  For such sextuples it follows from (2) and (3) that 

(17) [ E(F(c~ -k' x) " F(dp-kx x) ... F(•-k6x)) [ < C2 2'~ 

where C, g > 0 are constants and 0 < 2 < 1. Let us estimate the number of terms 

in the ith sum. Let re(A) denote the number of sextuples in A. It is clear that the 

number of sextuples k such that e(k, A) < 2 ~ does not exceed the number re(A)" 
(2 f + 1) 6. In order to estimate re(A), we observe that the sextuples in A may be 

divided into four types: (i) three distinct pairs of equal numbers; (ii) a quadruple 

and a pair of equal numbers; (iii) two triples of equal numbers; and (iv) all six 

numbers equal. The number of sextuples of  the first type is at most C1 ha, of the 

second and third types C2 n2, and of the fourth type C3n. Therefore m(A) <= C,n 3. 
Thus, in view of the fact that F is bounded on X, we obtain from (16) and (17) 

E(Snr)6 <= Csn3 ( 1+ ,~o 26i 22~') =<C~ 

where C, C~ > 0, i = 1,..., 5, are constants. 

This completes the proof. �9 

We now estimate the integral j'lz I_~K z ~/~(z), where r is the distribution of 

S~., for any even i > 0. 

LEMMA 3. 2. For 0 < i < 2r, 

f l  z ~r C,n"/g 2"- 
z I K 

where C,> 0 is a constant dependin9 only on i and r. 

PROOF. Integrating by parts and using Chebyshev's inequality and Lemma 3.2, 

we have 

f f__:_o f[: 1-.o fide(z) = ~P(z) + id(r - 1) = z'r 
i z l > r  + -oo 

f7 -~ :.o f: - O(z)" i f l - tdz + fl(r - 1) - +o [ r  1]izt-tdz 



194 M. RATNER Israel J. Math., 

f -ro -~ l dz = K ~ ( - K  - O) - i + Kt( t~(K + O) - 1) - 

- i r - 1]zi-ldz < + iE(S~) 2". z~-l-2"dz 
+ ~ "-~ JK+O 

<= C,n'K-2"+% i C,n'K -2"+~ = ~,n'K -2"+1. 

This proves the lemma. �9 

We now consider the random variable n(t, x) of Section 2. For this variable, 

{J  '1 z} { / It x: n(t,x) - --f > L =It  x: E l(~-tx) < t + 
1 = 0  

[t/l- Ldt ] } 
+ It x: Y'. l(dp-ix) > t . 

t = 0  

Applying Chebyshev's inequality and Lemma 3.2, we get 

tin+L J,l } { tm+L./, 
It x: Z l(c~-ix) < t =It x: Z 

t = 0  1 = 0  

(l(qb-'x) - l )  < - LI J ?  } 

C,(t/l+ Lx/T) '  < C/  
< LT'~ 'F  = 2/.," 

for sufficiently large t > 0, where C/> 0 is a constant. Then, for large t and all 

r > O ,  

{I +l (18)  It x: n( t , x ) -  > L < C, 
: L r �9 

PROOF OF THEOREM 3.1. Using the notation of Section 2, we consider a(t, w) 
and B(t, x), w = (x, y). We have 

C1 C1 z 
f /2( t ,w)dv  - fxBZ(t,x)ditl 1~_ ~ fxB2(t,x)ditl+ and 

(19) t 

]fxB (t,x)dit,_fx D2(t' C 1 t X)'dit:l~----~ fx  D:(t,t x)dItt + C~t 

where 

n(t,x) _~ n(t~) 
D(t,x) = ~ [F (~b- 'x ) -  /(~-~x)] = g(c~-~x). 

1 = 0  i = 0  

On the set akt'. 
[ t / l  + k e J t  ] 

Io(t,x)/x/-f- y~ 
1 = 0  

P(~ -~0/~/71 ~ a8 
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where R > 0 is a constant. Let us denote 

Sk(t,x) 1 t t / l + * , , / r  ] = E ff(tk-'x) and 
4? ,--o 

Then 

iLo  ,; x, 
S(t, x) = Sk(t, x) for x ~ Ak,. 

~ d l h  - Ls2(t ,x)a. ,[  ~_ Rs fxS2(t,x)d., + 8282" 

We now define a function hN(y), continuous on - oo < y < oo : 

~1,  for [y] < N, 

h jr(y) = 10 < hjv(y) < 1 on [ -  N - 1, - N] and [N, N + 1], 

L0, for lyl>=N + 1. 
Then 

(21) E~,rs2(t, x)] = Eu,[S2(t, x). hx(S(t, x))] + Eu,rs2(t, x) (1 - hN(S(t, x))]. 

The function z2hs(z) is bounded and continuous for fixed N. It, therefore 
follows from Theorem 2.1 that 

t ,-# oO 

where ~t(z) is the distribution of S(t, x) and o 2 = (2 ~/I) rvfx)(O). 
The second term in (21) satisfies the estimate 

Eu,[S2(t, x) (I - hs(S(t, x))] =< E,,ES2(t, x)g [ S(t,x) [ > N] 

where ZA denotes the indicator function of the set A. 

Denote 
~(t, x) = (n(t, x) - t / I )  / x/-f. 

Then the set Akt may be expressed as 

Ak, = {x: ke < ~(t,x) < (k + 1)e}. 

Applying the Schwartz inequality, Chebyshev's inequality and Lemma 3.3, we 

obtain 

x)xls(t,x)] > NI = Z f [Sk(t, x)]2Z[ S(t,x)[ > Ndlt, [S2(t, 
k .l[ke~_~(k+l)~] 

[f ]' z If 
t d [ k e ~ _ ~ . ( k + l ) r  I [ke__. r (k'l" 1)8] (22) k 

k L (k~)2s J L N2ra-4 J 
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where s, m > 0 are integers, m _-__ 2, Q > 0 is a constant, and 

E.,(r x)) 2s 

"Eu'(~(t'x))2~ k > 0 

1 k = O , - 1  

Eu,(~(t, x)) 2~ k < - 1. 
l(k + 1)~ 12~ 

By Lemma 3.2, the following inequality holds on Akt; 

But 

n(t, x) 1 + ~(t,x) t/L1 1 
t l x/- { t L, 

where L 1 is such that l(x) -> L 1 > 0. Therefore, 

1 
(23) eu,(Sk(t, x)) 2" < C,, -L~ i . 

It follows from (18) and Lemma 3.3 that ~(t, x) has finite and bounded moments 

of any order with respect to t. Thus, setting s > 2 and m >- 3 in (21) and taking 

account of (23), we see that for all sufficiently large t 

E~,,(S2(t, x) . x l  s(t ,x) l <= N)  <= Q / N  

where ~ > 0 is a constant. 

It now follows from (21) that 

f5 lim IE,,(S2(t,x)) - 2hN(z)exp(- z2/2u2)dz] < ~.]N 
I "* GO 

and, since N is arbitrary, 

lira E,,(S2(t,x)) = a*. 
It"* oO 

Since (20) is valid for any e > 0, we have 

lim E , , ( ~ ) =  a 2. 

The theorem now follows from (19). II 
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