THE CENTRAL LIMIT THEOREM FOR GEODESIC FLOWS ON *n*-DIMENSIONAL MANIFOLDS OF NEGATIVE CURVATURE

BY

M. RATNER

ABSTRACT

In this paper we prove a central limit theorem for special flows built over shifts which satisfy a uniform mixing of type $\gamma^{n^{\alpha}}$, $0 < \gamma < 1$, $\alpha > 0$. The function defining the special flow is assumed to be continuous with modulus of continuity of type $\rho^{\lfloor \log d(x_1, x_2) \rfloor}$, $0 < \rho < 1, \beta > 0$, and d is the natural metric on sequence space. Geodesic flows on compact manifolds of negative curvature are isomorphic to special flows of this kind.

DEFINITION. Letfbe a measurable, bounded real function, defined on a Lebesgue space M with measure m . f is said to satisfy the central limit theorem relative to a measurable ergodic flow $\{S^t\}$ in M if there exists a constant $\sigma > 0$ such that for any $-\infty < \alpha < \infty$

(1)
$$
\lim_{t \to \infty} m \left\{ x \colon \int_0^t (f(S^{\tau}x) - f) d\tau / \sigma \sqrt{t} < \alpha \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha} e^{-\frac{1}{2}u^2} du
$$

where $f = \int_M f(x) dm$.

An analogous definition holds for automorphisms; the only change is to replace the integral by a sum.

Sinai $[12]$ proved the central limit theorem for a wide class of functions for the case of a geodesic flow in a space of linear elements of a compact manifold M of constant negative curvature. The study of this class in $\lceil 12 \rceil$ makes essential use of the properties of M as a homogeneous space and of the representation of its group of motions. These methods do not apply to the case of varying curvature. This case was considered for three-dimensional compact manifolds in 19]. The

Received March 23, 1973

central limit theorem *(clt)* was proved there for arbitrary Anosov flows (which we shall henceforth call C-flows) of class $C²$ relative to a smooth invariant measure (see [13], [10], [14]), which is simply invariant Riemannian volume in the case of geodesic flows.

In this paper we prove the \emph{clt} for transitive Anosov flows of class C^2 on compacts Riemannian manifolds M of any dimension. The proof makes essential use of a special representation of a flow $\{T^t\}$ obtained by means of a Markov partition (see [13], [2], [3], [11]). This partition determines a matrix $\pi = ||\pi_{ij}||$, $\pi_{ij} = 0, 1$, of order *r*, such that for some integer $s > 0$ the elements of the matrix π^s are positive. Using this matrix, we then construct the space $X_n = X \subseteq \{1, 2, \dots, r\}^{\mathbb{Z}}$ of sequences $x = \{x_i\}_{i=-\infty}^{\infty}$, $\pi_{x_i,x_{i+1}} = 1$, with the metric

$$
\rho(x', x'') = \sum 2^{-|i|} e(x'_i, x''_i), \text{ where}
$$

$$
e(x'_i, x''_i) = \begin{cases} 0 & x'_i = x''_i \\ 1 & x'_i \neq x''_i. \end{cases}
$$

The space X is the domain of the shift automorphism ϕ : $(\phi x)_i = x_{i-1}$ (see [8]). The Markov partition enables us to define: (i) a continuous positive function $l(x)$ on X satisfying a Holder condition; (ii) a special flow S^t acting in the space $W =$ $(X, l) = \{(x, y): x \in X, 0 \le y < l(x), (x, l(x)) = (\phi x, 0)\}$ with the direct product metric, so that for $t < \inf_{x \in X} l(x)$,

$$
S^{t}(x, y) = \begin{cases} (x, y + t) & t < l(x) - y \\ (\phi x, t + y - l(x)) & t \ge l(x) - y \end{cases}
$$

and S^t is uniquely determined for other values of t by the condition that it be a one-parameter transformation group; (iii) a continuous mapping $\psi: W \rightarrow M$ such that $\psi S^t = T^t \psi$.

Now, if v is an S^t-invariant Borel measure in W such that the set on which ψ fails to be one-to-one has v-measure 0, then the flows S^t in (W, v) and T^t in $(M, \psi * \nu)$ are isomorphic (for a Borel set $A \subset M$, $\psi * \nu(A) = \nu(\psi^{-1}A)$).

This was precisely the method used by Sinai in [14] to construct invariant Gibbs measures for transitive C-flows of class C^2 . A Gibbs measure v in W induces a ϕ -invariant measure μ on X such that $dv = (d\mu \times dt) (1/l)$, where $\dot{l} = \int_{\mathbf{x}} l(x) d\mu$ and the shift ϕ in (X, μ) is a K-automorphism with a strong mixing of type $\varUpsilon_{\gamma, z}$, $0 < y < 1, \ \alpha > 0$ (see [8], [10], [14]), that is, for any sets $B_i \in \mathcal{M}_{k+n}^{\infty}, B_i \cap B_j$ $= \phi$ ($i \neq j$) $A \in \mathcal{M}_{-\infty}^k$,

(2)
$$
\sum_i |\mu(B_i/A) - \mu(B_i)| < C \gamma^{n^{\alpha}}.
$$

 \mathcal{M}_a^o is the σ -algebra of the sets measurable with respect to $\{x_i\}_{i=a}$ and $C > 0$ is a constant. The function *l* is assumed to be of class $\mathcal{Y}_{\rho,\kappa}$, that is, if $(x')_i = (x'')_i$ for $|i| \leq n$, then

$$
|l(x') - l(x'')| \leq A \rho^{n^{\kappa}}
$$

for constants $A = A(l) > 0, 0 < \rho < 1, \kappa > 0$.

Our main result is the *clt* for a wide range of continuous functions in W relative to the flow S^t in (W, v) with condition (2) and a function $l(x) \in \mathcal{Y}_{a,x}$.

Since smooth invariant measures for transitive C -flows of class $C²$ are Gibbs measures 114], the main result implies the *clt* for such measures, in particular, the *clt* for geodesic flow on manifolds of negative curvature relative to invariant Riemannian volume. The class of functions for which the *clt* holds coincides with the class of functions found in $[11]$ for constant curvature.

1. Auxiliary lemmas

Let ϕ be the shift automorphism in (X, μ) with condition (2).

LEMMA 1.1. Let $F \in \mathcal{X}_{p,K}$ on X and $D_N F \to \infty$ as $N \to \infty$, where

$$
D_N(F) = \int_X \left[\sum_{i=1}^N \left(F(\phi^{-i} x) - F \right) \right]^2 d\mu
$$

$$
F = \int_X F(x) d\mu = E(F).
$$

Then $D_N F \sim \sigma_F N$, $\sigma_F > 0$, and *F* satisfies the clt; moreover, $\sigma = \sqrt{\sigma_F}$ in (1).

PROOF. For $x \in X$, we set

$$
\Delta_{-k}^{k}(x) = \{x' \in X : x'_{i} = x_{i} | i \leq k\}
$$

and denote

$$
F_k(x) = \int_{\Delta_{-k}^k(x)} F(x') d\mu_{\Delta_{-k}^k(x)}
$$

where the integration is with respect to the conditional measure induced by μ on $\Delta_{-\mathbf{k}}^{\mathbf{k}}(x)$. Since $F \in \mathcal{F}_{\rho,\kappa}$, it follows that in the $L^2_{\mu}(X)$ -norm

(3) II *F(x) - Fk(X)I1* <AP ~

It then follows from [6] that when condition (2) holds, $D_NF \sim \sigma_F N$ for $\sigma_F > 0$, as $N \rightarrow \infty$, and the function F satisfies the *clt*.

184 M. RATNER Israel J. Math.,

Likewise it follows from [6] (see also [1]) that if $D_kF_{1k^o} \sim Ck$ as $k \to \infty$ for $0 < \delta < 1$, where $C > 0$ is a constant, then for some $\tau = \tau(\delta) > 0$:

(4)
$$
\left| E\left(\exp\left\{iz\frac{\sum\limits_{i=0}^{k}\left(F_{\mathfrak{l}k} \delta_{j}(\phi^{-1} x)-F\right)}{\sqrt{D_{k}F_{\mathfrak{l}k} \delta_{j}}}\right\}\right)-\exp\left\{-\frac{1}{2}z^{2}\right\}\right| \leq 1/k^{\mathfrak{r}}
$$

for $z \in [-k^{\mathsf{T}}, k^{\mathsf{T}}]$.

The question of conditions on F under which $D_N F \sim \sigma_F N$, $\sigma_F > 0$ is studied in [7]. (According to our assumptions, if $F \in \mathcal{Y}_{p,K}$ this is equivalent to $D_N F \to \infty$ as $N \rightarrow \infty$.)

Let U be the unitary operator in $L^2(u(X))$ adjoint to ϕ . Every function $F \in L^2(u(X))$ has an absolutely continuous spectral function relative to U. In this case, either $D_NF \to \infty$ or $D_NF < c < \infty$. Let $r_F(\rho)$ be the spectral density of F. It was shown in [7] that if (i) $r_F(\rho)$ is continuous at $\rho = 0$ and (ii) $r_F(0) = r_0 > 0$, then $D_N F \sim 2\pi r_0 N$ as $N \to \infty$.

It follows from (3) and condition (2) that the correlation function of $F \in \mathcal{Y}_{p,K}$ decreases to zero at a rate of type $\rho_1^{n^*}$; $0 < \rho_1 < 1$, $\alpha_1 > 0$. In this case [7] conditions (i)-(ii) are surely satisfied when the equation $UG - G = F - F$ has no solutions in $L^2_u(x)$. But if there is a solution in $L^2_u(X)$, then the variance $D_N(F)$ is bounded.

Now let $l \in \mathcal{X}_{a,k}$ be a positive function on X and S' the special flow in (W, v) constructed over (X, μ) with the aid of the function *l, dv = (du x dt)/l.* It is assumed that S' is a K-flow in (W, v) (this is true in the case of Gibbs measures of transitive C-flows). It then follows from [5] that the equation $UG - G = I - I$ has no solutions in $L^2(u)$, since the existence of such a solution would imply that the spectrum of the flow S^t has a discrete component. Thus l satisfies the *clt*.

LEMMA 1.2. Let $F \in \mathcal{T}_{\rho,\kappa}$, $K \in \mathcal{Y}_{\rho_1,\kappa_1}$ be continuous on X and $D_nF \sim \sigma_F n$ $(\sigma_F > 0)$. Then

(5)
$$
\lim_{n\to\infty} E\left(K(x) \exp\left\{iz\frac{\sum_{i=0}^{n} F(\phi^{-i}x) - nF}{\sqrt{\sigma_F n}}\right\}\right) = R \exp(-\frac{1}{2}z^2).
$$

The convergence is uniform in z on every finite interval.

PROOF. We write the sum in (5) as

$$
\sum_{i=0}^{[n^{\frac{1}{4}}]-1} (F(\phi^{-i}x) - F) + \sum_{i=[n^{\frac{1}{4}}]}^{n} (F(\phi^{-i}x) - F) = J_1 + J_2.
$$

Since F is bounded on X, it follows that for some constant $C_1 > 0$

 $\left|\frac{J_1}{\sqrt{\sigma_F n}}\right| < C_1 n^{-\frac{1}{4}}.$

Therefore.

$$
\left|\exp\left\{iz\frac{J_1+J_2}{\sqrt{\sigma_F n}}\right\}-\exp\left\{iz\frac{J_2}{\sqrt{\sigma_F n}}\right\}\right|\leq r'_n
$$

where r'_n is independent of x and $r'_n \to 0$ as $n \to \infty$, uniformly in z on every finite interval.

Let $0 < \delta < \frac{1}{4}$; consider the function $F_{[n^{\delta}]}(x)$. Then, setting $H_{[n^{\delta}]}(x) =$ $F(x) - F_{\text{f,n-1}}(x)$, we conclude from (3) that for all $x \in X$

$$
\left|H_{\left[n^{\delta}\right]}(x)\right|< A\rho^{n^{\delta\kappa}}.
$$

Consider the sum

$$
J_2 = \sum_{i=n^{\frac{1}{4}}}^{n} (F(\phi^{-i}x) - F) = \sum_{i=n^{\frac{1}{4}}}^{n} (F_{[n^a]}(\phi^{-i}x) - F) + \sum_{i=n^{\frac{1}{4}}}^{n} H_{[n^a]}(\phi^{-i}x) = I_1 + I_2,
$$

where

$$
\left|\frac{I_2}{\sqrt{\sigma_F n}}\right| < A n \rho^{n^{\delta}}.
$$

Then

$$
\left|\exp\left\{iz\frac{J_2}{\sqrt{\sigma_F n}}\right\}-\exp\left\{iz\frac{I_1}{\sqrt{\sigma_F n}}\right\}\right|
$$

where r''_n is independent of x and $r''_n \to 0$ as $n \to \infty$, uniformly in z on every finite interval. By (3), $D_n(F_{n^d}) \sim n\sigma_F$ as $n \to \infty$. Therefore,

$$
\lim_{n\to\infty} E\left(K(x) \exp\left\{iz \sum_{i=1}^{n} (F_{\lfloor n\delta\rfloor}(\phi^{-i}x) - \overline{F})/\sqrt{\sigma_F n}\right\}\right)
$$
\n
$$
= \lim_{n\to\infty} E\left(K_{\lfloor n\delta\rfloor}(x) \exp\left\{iz \sum_{i=n+1}^{n} (F_{\lfloor n\delta\rfloor}(\phi^{-i}x) - \overline{F})/\sqrt{D_n F_{\lfloor n\delta\rfloor}}\right\}\right).
$$

It follows from condtion (2) that

$$
\left| E\left(K_{\lfloor n^d \rfloor}(x) \exp\left(iz \sum_{i=n}^n (F_{\lfloor n^d \rfloor}(\phi^{-i} x) - F)/\sqrt{D_n F_{\lfloor n^d \rfloor}} \right) \right) - K E\left(\exp iz \sum_{i=n+1}^n (F_{\lfloor n^d \rfloor}(\phi^{-i} x) - F)/\sqrt{D_n F_{\lfloor n^d \rfloor}} \right) \right) \right| < r_n^m
$$

where $r_n^m \to 0$ as $n \to \infty$ uniformly in z on every finite interval. The assertion now follows easily from (4) .

COROLLARY 1.3. Let $R \in \mathcal{T}_{p,\kappa}$, $Q \in \mathcal{T}_{p_1,\kappa^1}$ be continuous on X and $D_n R \sim \sigma_R n$, $\sigma_R > 0$, $D_nQ \sim \sigma_0 n$, $\sigma_Q > 0$. In Lemma 1.2, set $K(x) = l(x)$ (the special *representation function) and* $F(x) = z_1R(x) + z_2Q(x)$, where z_1, z_2 are arbitrary *real numbers. Then, setting* $z = 1$ *in (5), we get*

$$
\lim_{n \to \infty} (1/l) E\left(l(x) \exp\left\{ i z_1 \sum_{i=1}^n (R(\phi^{-i} x) - \bar{R}) / \sqrt{n} + i z_2 \sum_{i=1}^n (Q(\phi^{-i} x) - \bar{Q}) / \sqrt{n} \right\} \right)
$$

(6) = $\exp\left\{ -\frac{1}{2} (z_1^2 \sigma_R + 2 b_{RQ} z_1 \cdot z_2 + z_2^2 \sigma_Q) \right\}$

where

$$
b_{RQ} = \lim_{n \to \infty} \left\{ E\left(\sum_{i=1}^n (R(\phi^{-i}x) - \bar{R}) \cdot \sum_{i=1}^n (Q(\phi^{-i}x) - \bar{Q}) \right) / n \right\}.
$$

Indeed, if z_1 and z_2 are such that $D_n(z_1R + z_2Q) \sim dn$, $d > 0$, then (6) follows at once from (5). But if z_1 and z_2 are such that the variance $D_n(z_1R + z_2Q)$ is bounded as $n \to \infty$, this means that the limit distribution is degenerate; but then also $z_1^2 \sigma_R + 2b_{RQ} z_1 z_2 + z_2^2 \sigma_Q = 0$, and so (6) remains valid.

If we let μ_i denote the measure on X defined by $d\mu_i = (l(x) / I)d\mu$, then (6) means that the two-dimensional *clt* is satisfied with respect to the measure μ_i .

We now consider the special flow S' in $(W, v) = (X, \mu, I)$. We shall adopt the convention that lower case Latin letters denote functions on W ; upper case Latin letters denote functions on X. If $f(w)$ and $F(x)$ are functions on (W, v) and (X, μ) , respectively, then $N(f)$ and $E(F)$ will denote their means:

$$
\bar{f} = N(f) = \int_W f(w)dv; \ \bar{F} = E(F) = \int_X F(x)d\mu.
$$

For $w \in W$, we write $w = (x, y)$, where $x \in X$ and $0 \le y < l(x)$. With any function $f(w)$ on W we associate a function $F(x)$ on X as follows:

$$
F(x) = \int_0^{l(x)} f(x, y) dy.
$$

Let V be the infinitesimal operator corresponding to the group ${V_t}$ of unitary operators adjoint to the flow S^t, that is, $V_t = \exp(itV)$. Let $f \in L^2_v(W)$, and consider the following equations: in $L^2(\mathcal{W})$,

$$
(7) \tVh(w) = f(w) - f
$$

and in $L^2_{\mu}(X)$,

(8)
$$
UH(x) - H(x) = F(x) - (F/l)l(x).
$$

It is obvious that $\vec{f} = \vec{F}/l$. $UH(x) = H(\phi x)$.

LEMMA 1.4. *Equation* (7) *is solvable iff equation* (8) *is solvable.*

PROOF. Assume that $h(w) \in L^2(W)$ satisfies equation (7). Then

$$
\int_0^{l(x)} Vh(x, y) dy = \int_0^{l(x)} (f(x, y) - \bar{f}) dy = F(x) - (F/\bar{I})l(x).
$$

It is readily shown that the following formula is valid in $L^2(\mathcal{W})$:

$$
\int_0^{l(x)} Vh(x, y) dy = h(x, l(x)) - h(x, 0); h(x, 0) \in L^2_{\mu}(X).
$$

But $h(x, l(x)) = h(\phi x, 0) = Uh(x, 0)$. Therefore the function $H(x) = h(x, 0) \in L^2(u)$ satisfies equation (8).

Now let $H(x)$ satisfy equation (8), that is,

$$
UH(x) - H(x) = \int_0^{l(x)} (f(x, y) - \bar{f}) dy, \ H(x) \in L^2_{\mu}(X).
$$

Consider the function

$$
h(x, y) = H(x) + \int_0^y (f(x, z) - \bar{f}) dz.
$$

Then $h(x, l(x)) = h(\phi x, 0)$. Therefore $h(x, y) = h(w) \in L^2$ (W) and $h(w)$ satisfies equation (7) .

2. The clt **for the special flow**

It is assumed here that $l \in T_{\rho,\kappa}$ and $D_n l \sim \sigma_l n$, $\sigma_l > 0$ (as shown above, this is the case, for example, if S^t is a K-flow in (W, v)). Then *l* satisfies the *clt*.

We shall say that $f \in \Upsilon_{p,\kappa}$ on W if

$$
F(x) = \int_0^{l(x)} f(x, y) dy \in \Upsilon_{\rho,\kappa} \text{ on } X.
$$

THEOREM 2.1 Let $f \in \mathcal{T}_{p,K}$ be continuous on W and suppose that equation (7) *has no solution in* $L^2(\mathcal{W})$ *. Then f satisfies the clt relative to* S^t *, and moreover*

$$
\sigma^2 = (2\pi/l)r_{F(x)-(F/l)l(x)}(0) > 0
$$

in (1), where $r_a(\rho)$ is the spectral density of G.

PROOF. Since $\tilde{F}(x) = F(x) - (F/I) I(x) \in \mathcal{F}_{\rho,\kappa}$ it follows from Lemma 1.4 that

 $D_n(\tilde{F}) \sim \sigma_F n$ as $n \to \infty$, where $\sigma_F = 2\pi r_F(0) > 0$. Then, by Lemma 1.1 \tilde{F} satisfies the *clt* relative to ϕ in (X,μ) .

Define a function $n(t, x)$ by

$$
\sum_{i=0}^{n(t,x)} l(\phi^{-i}x) < t \leq \sum_{i=0}^{n(t,x)+1} l(\phi^{-i}x).
$$

In other words, $n(t, x)$ is the number of times the trajectory of the flow S^t , issuing from x in the negative direction, hits X during time t. Since $l(x)$ satisfies the *clt*, one easily infers (see, for example, [4]) that for any fixed $z, -\infty < z < \infty$,

$$
\lim_{t\to\infty}\mu\left\{x\colon \frac{n(t,x)-t/l}{\sigma_l\sqrt{t}(l)^{-3/2}}
$$

For $w = (x, y)$, we denote

$$
a(t, w) = \left(\int_0^t f(S^{-u}w) du - t \bar{f} \right) / \sqrt{t}
$$

$$
B(t, x) = \left(\int_0^t f(S^{-u}(x, 0)) du - t \bar{f} \right) / \sqrt{t}.
$$

It is clear that

$$
\left| \, a(t,w) - B(t,x) \, \right| < C_1 / \sqrt{t}
$$

where $C_1 > 0$ is a constant independent of w and x.

Then, for any z in a finite interval $[-K, K]$,

(9)
$$
\left|N(\exp\{iza(t,w)\}) - \frac{1}{l}\int_{X} d\mu \int_{0}^{l(x)} \exp\{izB(t,x)\}dy\right| < \frac{C_{1}K}{\sqrt{t}}.
$$

We have

$$
\frac{1}{I}\int_{X}d\mu\int_{0}^{l(x)}\exp\left\{izB(t,x)\right\}dy=\frac{1}{I}E(l(x)\exp\left\{izB(t,x)\right\})=E_{\mu_{l}}(\exp\left\{izB(t,x)\right\}).
$$

Let $\varepsilon > 0$ be arbitrary and A_{kt} the set

$$
A_{kt} = \left\{ x \in X \colon \frac{t}{l} + k \varepsilon \sqrt{t} \leq n(t,x) < \frac{t}{l} + (k+1) \varepsilon \sqrt{t} \right\}, \qquad \bigcup_{k=-\infty}^{\infty} A_{kt} = X.
$$

Then:

$$
E(l(x) \exp\{izB(t,x)\}) = \sum_{k=-\infty}^{\infty} \int_{A_{kt}} l(x) \exp\{izB(t,x)\} d\mu.
$$

Define L by

Then there exists t_0 such that for all $t \ge t_0$

(10)
$$
\mu\left\{x:\frac{|n(t,x)-t|I|}{\sqrt{t}}>L\right\}<\varepsilon.
$$

Consider the sets A_{kt} for $|k\varepsilon| \leq L$. On these sets, we have

(11)
$$
\left| B(t,x) - \frac{\sum_{i=0}^{n(t,x)} F(\phi^{-i}x) - (F/l) \sum_{i=0}^{n(t,x)} l(\phi^{-i}x)}{\sqrt{ln(t,x)}} (1 + b'_t(x)) \right| < \frac{C_1}{\sqrt{t}}
$$

where $|b_t^1(x)| \leq b_t^1$ and $b_t^1 \to 0$ as $t \to \infty$, uniformly in $|k\varepsilon| \leq L$. We denote

$$
G(t,x) = \left(\sum_{i=0}^{n(t,x)} \widetilde{F}(\phi^{-i}x)\right) / \sqrt{ln(t,x)}
$$

where $\tilde{F}(x) = F(x) - (F/l) l(x)$. It follows from (9), (10), and (11) that for $z \in [-K, K]$

$$
\left| N(\exp\left\{iza(t,w)\right\}) - \frac{1}{l} \sum_{k\epsilon=-L}^{L} \int_{A_{k\epsilon}} l(x) \exp\left\{i z G(t,x) (1+b'_{t}(x))\right\} d\mu \right|
$$

(12)

$$
< \frac{C_{1}K}{\sqrt{t}} + \varepsilon.
$$

For $x \in A_{kt}$, we set $\tilde{n}(t, x) = n(t, x) - (t/l + k\varepsilon \sqrt{t})$. We rewrite $G(t, x)$ thus:

$$
G(t,x) = \left\{ \sum_{i=0}^{\lfloor t/l + ke\sqrt{t} \rfloor} \widetilde{F}(\phi^{-i}x) + \sum_{i=\lfloor t/l + ke\sqrt{t} \rfloor + 1}^{n(t,x)} \widetilde{F}(\phi^{-i}x) \right\} / \left(l(t/l + ke\sqrt{t} + \widetilde{n}(t,x)) \right)^{\frac{1}{2}}.
$$

Since $|\tilde{n}(t, x)| \leq \varepsilon \sqrt{t}$ for $x \in A_{kt}$, it follows that

$$
G(t,x) = \frac{\sum_{i=0}^{[t/l + ke/l]} \tilde{F}(\phi^{-i}x)}{\left[l(t/l + ke\sqrt{t}) \right]^{\frac{1}{2}}} (1 + b_t^3(x)) + b_t^2(x)
$$

where $|b_t^2(x)| \leq \varepsilon b$, $b > 0$ a constant, $|b_t^3(x)| \leq b_t^3 \to 0$ as $t \to \infty$ uniformly in $|k\varepsilon| \leq L.$

We denote

$$
H^{k}(t,x)=\bigg(\sum_{i=0}^{[t/l+k\epsilon,\ell]} \widetilde{F}(\phi^{-i}x)\bigg)\bigg/\bigg(l(t/l+k\epsilon\sqrt{t})\bigg)^{\frac{1}{2}}.
$$

Then, in view of (12), we have for $z \in [-K, K]$

$$
\left| N(\exp\left\{iza(t,w)\right\}) - \frac{1}{l} \sum_{k\epsilon=-L}^{L} \int_{A_{kt}} l(x) \exp\left\{izH^{k}(t,x)(1+b_{t}^{3}(x))(1+b_{t}^{1}(x))\right\} d\mu \right|
$$
\n(13)\n
$$
< \frac{C_{1}K}{\sqrt{t}} + \varepsilon + \varepsilon Kb.
$$

We now study the sets A_{kt} more closely. They are defined by

$$
A_{kt} = \left\{ x \colon \sum_{i=0}^{[t/l + k\epsilon \sqrt{t}]} l(\phi^{-i} x) < t \leq \sum_{i=0}^{[t/l + (k+1)\epsilon \sqrt{t}]} l(\phi^{-i} x) \right\}.
$$

The sum on the right is

$$
\sum_{i=0}^{[t/l+(k+1)\epsilon\sqrt{t}]}l(\phi^{-i}x) = \sum_{i=0}^{[t/l+k\epsilon\sqrt{t}]}l(\phi^{-i}x) + \sum_{i=[t/l+k\epsilon\sqrt{t}+1+1}^{[t/l+(k+1)\epsilon\sqrt{t}]}l(\phi^{-i}x) = I_1(x) + I_2(x).
$$

Since ϕ is ergodic, it follows that for δ_1 , $\delta_2 > 0$ there exists $t_1 > 0$ such that for $t \geq t_1$

(14)
$$
\mu\{x: |I_2(x)-\varepsilon\sqrt{t}| \leq \varepsilon\sqrt{t}\delta_1\} \geq 1-\delta_2.
$$

Let $A'_{kt} \subset A_{kt}$ denote the set of all $x \in A_{kt}$ for which (14) holds, and set $I_2(x)$ $-\varepsilon\sqrt{t}$ $\bar{l} = \varepsilon\sqrt{t}\delta_1(x)$. Then

$$
A'_{kt} = \left\{ x : t - \varepsilon \sqrt{t} \cdot l - \varepsilon \sqrt{t} \cdot \delta_1(x) \le \sum_{i=0}^{\lceil t/l + k\varepsilon \sqrt{t} \rceil} l(\phi^{-i}x) < t \right\}
$$
\n
$$
= \left\{ x : \frac{- (k+1)\varepsilon}{(1/l + k\varepsilon/\sqrt{t})^{\frac{1}{2}}} - \delta_1(x)\varepsilon \le \frac{\sum_{i=0}^{\lceil t/l + k\varepsilon \sqrt{t} \rceil}}{(t/l + k\varepsilon/\sqrt{t})^{\frac{1}{2}}} < \frac{-k\varepsilon}{(1/l + k\varepsilon/\sqrt{t})^{\frac{1}{2}}} \right\}
$$

where $|\delta_1(x)| < \delta_1$, $\mu(A_{kt} \Theta A'_{kt}) < \delta_2$, δ_1 , $\delta_2 \to 0$ as $t \to \infty$ for $|k\varepsilon| \leq L$.

We denote

$$
A''_{kt} = \left\{ x \colon \frac{-(k+1)\varepsilon}{(1/l + k\varepsilon/\sqrt{t})^{\frac{1}{2}}} \leq \frac{\sum_{i=0}^{[t/l + k\varepsilon/\sqrt{t}]} (l(\phi^{-i}x) - l)}{(t/l + k\varepsilon/\sqrt{t})^{\frac{1}{2}}} < \frac{-k\varepsilon}{(1/l + k\varepsilon/\sqrt{t})^{\frac{1}{2}}} \right\}.
$$

It is clear that $\mu(A_{kt} \Theta A_{kt}'') \to 0$ as $t \to \infty$ uniformly in $|k\varepsilon| \leq L$.

Thus, we can replace the set A_{kt} in (13) by the set A''_{kt} defined by the sum

$$
\xi^{k}(t,x) = \sum_{i=0}^{\lceil t/l + k\epsilon\sqrt{t} \rceil} (l(\phi^{-i}x) - l)/(t/l + k\epsilon\sqrt{t})^{\frac{1}{2}}.
$$

Consider the pair of random variables $(\xi^k(t, x), H^k(t, x))$. We know that $D_n(l) \sim \sigma_l n$ and $D_n(F-(F/l)l) \sim \sigma_F n$. Applying Corollary 1.3, we see that for fixed k and $t \to \infty$ the two-dimensional distribution of the vector $(\zeta^k(t, x), H^k(t, x))$ is asymptotically normal with respect to the measure $\mu_{\rm t}$, with covariance matrix $\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$, where

$$
\alpha = \sigma_{l},
$$

$$
\gamma = \frac{1}{l} \sigma_{l}, \qquad \beta = b_{l, l} \gamma_{l}.
$$

Therefore, for fixed ε ,

$$
\left| \frac{1}{l} \sum_{k\epsilon=-L}^{L} \int_{A_{kt}} l(x) \exp \{izH^{k}(t,x)(1+b_{i}^{3}(x))(1+b_{i}'(x))\} d\mu - \sum_{k\epsilon=-L}^{L} \iint_{-(k+1)\epsilon \sqrt{l} \leq u_{1} \leq -k\epsilon \sqrt{l}} \exp \{iz u_{2}) \Phi(du_{1}, du_{2}) \right| \to 0
$$

as $t \to \infty$, where $\Phi(du_1, du_2)$ is the two-dimensional normal distribution with covariance matrix $\begin{pmatrix} \alpha & \beta \\ \beta & \gamma \end{pmatrix}$ and zero expectation.

It then follows from (13) that

$$
\overline{\lim}_{t\to\infty}\left(N(\exp\{iza(t,w)\})-\sum_{k\in\{-L\}}^{L}\iint_{-(k+1)\epsilon\sqrt{1}\leq u_1\leq-k\epsilon\sqrt{1}}\exp\{iz\,u_2\}\,\Phi(du_1,du_2)\right)
$$

$$
\leq (1+K)\epsilon
$$

for $z \in [-K, K]$. But for $\varepsilon \to 0$, $L \to \infty$, it is also true that

$$
\Big| \sum_{k=-L}^{L} \iint_{-(k+1)\epsilon \sqrt{1} \le u_1 \le -k\epsilon \sqrt{1}} \exp \left\{ iz u_2 \right\} \Phi(du_1, du_2)
$$

$$
- \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left\{ iz u_2 \right\} \Phi(du_1, du_2) \Big| \to 0.
$$

Then

$$
\lim_{t\to\infty} N(\exp\{iza(t,w)\}) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\{izu_2\} \Phi(du_1, du_2) = \exp\left\{-\frac{z^2}{2\sigma_F/l}\right\}
$$

But $\sigma_p = 2\pi r_p(0)$. This completes the proof of Theorem 2.1.

REMARK (i). If v is a Gibbs measure in W, then μ is a Gibbs measure in X (see [14]) and satisfies condition (2). Under these conditions, if S^t is a K-flow in *(W,v),* Theorem 2.1 is the *clt* for Gibbs measures.

REMARK (ii). Let T' be a transitive C-flow of class C^2 on (M, v^*) with Gibbs measure v^* . As stated above, T' is a K-flow in (M, v^*) (see [14]) and is isomorphic to the special flow S^t in (W, v) with Gibbs measure v. Moreover, it was shown in [14] (see also [11]) that this isomorphism $\psi : W \to M$ is such that, if $h \in \mathcal{T}_{p,k}$ on *M*, that is, $|h(z) - h(z')| < C \rho^{\lfloor \log d(z, z') \rfloor \kappa}$ for some $C, \kappa > 0, 0 < \rho < 1, d$ the metric in M, then the function $f(w) = h(\psi w)$ belongs to $\Upsilon_{p,k}$ on W with $0 < \rho_1 < 1$. Thus Theorem 2.1 is the *clt* for the class of functions $h \in \Upsilon_{p,K}$ relative to a transitive C-flow of class C^2 on M. For geodesic flows on a manifold of negative curvature, this class of functions is precisely that found in $\lceil 12 \rceil$ for the case of constant curvature.

3. Asymptotic behavior of variance

We shall show here that for $f \in \mathcal{T}_{p,K}$ on (W, v) the normalizing factor in the *clt* is simply the variance $D_t f$, that is, we shall prove Theorem 3.1.

THEOREM 3.1. Let $f \in \mathcal{T}_{p,k}$ and suppose that equation (7) has no solution in $L_v^2(W)$. Then $D_t f \sim \sigma_f t$ as $t \to \infty$, where

$$
\sigma_f=\frac{2\pi}{l}r_F(0)>0.
$$

In the opposite case the variance $D_t f$ is bounded as $t \to \infty$.

LEMMA 3.2. Let $F \in T_{p,K}$ on (X,μ) , $F=0$, $S_F''=\sum_{i=1}^n F(\phi^{-i}x)$. For any *integer* $r > 0$,

$$
E(S_F^n)^{2r} = \int_X \left[S_F^n(x)\right]^{2r} d\mu \leq C_r n^r
$$

where $C_r > 0$ is a constant depending only on r.

PROOF. We confine ourselves to the case $r = 3$. For other values of r the proof is analogous.

We have

(15)
$$
E(S_F^{\mathbf{r}})^6 = \sum_{k_1,\cdots,k_6} E(F(\phi^{-k_1}x)\cdots F(\phi^{-k_6}x))
$$

where k_j , $j = 1, \dots, 6$, take values from 1 to *n*. Let $k = (k_1, \dots, k_6)$ and $i = (i_1, \dots, i_6)$ be two sextuples of integers, and set

$$
e(k, i) = \max(|k_1 - i_1|, \cdots, |k_6 - i_6|).
$$

Let A denote the set of sextuples $(k_1, \dots, k_6) = k$, $1 \leq k_i \leq n$, such that for any k_l there exists $k_l = k_l$ for some $j \neq l$. Then the sum in (15) can be written

(16)
$$
E(S_F^n)^6 = \sum_{k \in A} + \sum_{k:1 \leq e(k,A) \leq 2} + \cdots + \sum_{k:2^i \leq e(k,A) \leq 2^{i+1}} + \cdots
$$

In any sextuple k in the ith sum, there exists k_j , $1 \le j \le 6$, such that $|k_j - k_i| \ge 2$ for all $l \neq j$. For such sextuples it follows from (2) and (3) that

(17)
$$
\left| E(F(\phi^{-k_1} x) \cdot F(\phi^{-k_2} x) \cdots F(\phi^{-k_6} x)) \right| \leq C \lambda^{2^{i\alpha}}
$$

where C, $\alpha > 0$ are constants and $0 < \lambda < 1$. Let us estimate the number of terms in the *i*th sum. Let $m(A)$ denote the number of sextuples in A. It is clear that the number of sextuples k such that $e(k, A) < 2^i$ does not exceed the number $m(A)$. $(2^{i} + 1)^{6}$. In order to estimate $m(A)$, we observe that the sextuples in A may be divided into four types: (i) three distinct pairs of equal numbers; (ii) a quadruple and a pair of equal numbers; (iii) two triples of equal numbers; and (iv) all six numbers equal. The number of sextuples of the first type is at most $C_1 n^3$, of the second and third types $C_2 n^2$, and of the fourth type $C_3 n$. Therefore $m(A) \leq C_4 n^3$. Thus, in view of the fact that F is bounded on X , we obtain from (16) and (17)

$$
E(S_P^n)^6 \leq C_5 n^3 \left(1 + \sum_{i=0}^{\infty} 2^{6i} \lambda^{2^{ai}}\right) \leq C n^3
$$

where C, $C_i > 0$, $i = 1, \dots, 5$, are constants.

This completes the proof.

We now estimate the integral $\int_{|z| \leq K} z ^i d\Phi(z)$, where $\Phi(z)$ is the distribution of S_F^n , for any even $i > 0$.

LEMMA 3.2. *For* $0 < i < 2r$, \int $z' d\Phi(z) \leq C_r n' / K^{2n}$ $z \leq K$

where $\tilde{C}_r > 0$ is a constant depending only on *i* and *r*.

PROOF. Integrating by parts and using Chebyshev's inequality and Lemma 3.2, we have

$$
\int_{|z|>K} z^i d\Phi(z) = \int_{-\infty}^{-K-0} z^i d\Phi(z) + \int_{K+0}^{\infty} z^i d(\Phi(z) - 1) = z^i \Phi(z) \Big|_{-\infty}^{-K-0}
$$

$$
- \int_{-\infty}^{-K-0} \Phi(z) \cdot iz^{i-1} dz + z^i (\Phi(z) - 1) \Big|_{K+0}^{\infty} - \int_{K+0}^{\infty} [\Phi(z) - 1] iz^{i-1} dz
$$

$$
= K^{i}\Phi(-K - 0) - i \int_{-\infty}^{-K - 0} \Phi(z) z^{i-1} dz + K^{i}(\Phi(K + 0) - 1) -
$$

$$
- i \int_{K + 0}^{\infty} [\Phi(z) - 1] z^{i-1} dz \leq K^{i} \frac{E(S_{F}^{n})^{2r}}{K^{2r}} + iE(S_{F}^{n})^{2r} \cdot \int_{K + 0}^{\infty} z^{i-1-2r} dz
$$

$$
\leq C_{r} n^{r} K^{-2r + i} + i C_{r} n^{r} K^{-2r + i} = \tilde{C}_{r} n^{r} K^{-2r + i}.
$$

This proves the lemma. \Box

We now consider the random variable $n(t, x)$ of Section 2. For this variable,

$$
\mu\left\{\left|x\right|:\left|n(t,x)-\frac{t}{l}\right|>L\sqrt{t}\right\}=\mu\left\{x:\sum_{i=0}^{[t/l+L\sqrt{t}]}l(\phi^{-i}x)\leq t\right\}.
$$

Applying Chebyshev's inequality and Lemma 3.2, we get

$$
\mu\left\{x\colon \sum_{i=0}^{[t/l+L\sqrt{t}]}l(\phi^{-i}x)\n
$$
\leq \frac{C_r(t/l+L\sqrt{t})^r}{L^r l^{2r}t^r} \leq \frac{C'_r}{2L'}
$$
$$

for sufficiently large $t > 0$, where $C_r > 0$ is a constant. Then, for large t and all $r>0$,

(18)
$$
\mu\left\{x: \left|n(t,x)-\frac{t}{l}\right|>L\sqrt{t}\right\}\leq \frac{C'_r}{L^r}.
$$

PROOF OF THEOREM 3.1. Using the notation of Section 2, we consider $a(t, w)$ and $B(t, x)$, $w = (x, y)$. We have

(19)
$$
\left| \int_{w} a^{2}(t, w) dv - \int_{X} B^{2}(t, x) d\mu_{l} \right| \leq \frac{C_{1}}{\sqrt{t}} \int_{X} B^{2}(t, x) d\mu_{l} + \frac{C_{1}^{2}}{t} \text{ and}
$$

$$
\left| \int_{X} B^{2}(t, x) d\mu_{l} - \int_{X} \frac{D^{2}(t, x)}{t} d\mu_{l} \right| \leq \frac{C_{1}}{\sqrt{t}} \int_{X} \frac{D^{2}(t, x)}{t} d\mu_{l} + \frac{C_{1}^{2}}{t}
$$

where

$$
D(t,x) = \sum_{i=0}^{n(t,x)} \left[F(\phi^{-i}x) - \frac{F}{l} l(\phi^{-i}x) \right] = \sum_{i=0}^{n(t,x)} \widetilde{F}(\phi^{-i}x).
$$

On the set A_{kt} :

$$
\left| D(t,x)/\sqrt{t} - \sum_{i=0}^{[t/l + ke\sqrt{t}]} \widetilde{F}(\phi^{-i}x)/\sqrt{t} \right| \leq R\varepsilon
$$

where $R > 0$ is a constant. Let us denote

$$
S_k(t,x) = \frac{1}{\sqrt{t}} \sum_{i=0}^{\lfloor t/l + k\epsilon \sqrt{t} \rfloor} \widetilde{F}(\phi^{-i}x) \text{ and}
$$

Then

$$
(20) \qquad \Big|\int_{X}\frac{D^2(t,x)}{t}d\mu_t-\int_{X}S^2(t,x)d\mu_t\Big|\leq Re\int_{X}S^2(t,x)d\mu_t+R^2\epsilon^2.
$$

 $S(t, x) = S_k(t, x)$ for $x \in A_k$.

We now define a function $h_N(y)$, continuous on $-\infty < y < \infty$:

$$
h_N(y) = \begin{cases} 1, \text{ for } |y| \le N, \\ 0 \le h_N(y) \le 1 \text{ on } [-N-1, -N] \text{ and } [N, N+1], \\ 0, \text{ for } |y| \ge N+1. \end{cases}
$$

Then

(21)
$$
E_{\mu_l}[S^2(t,x)] = E_{\mu_l}[S^2(t,x) \cdot h_N(S(t,x))] + E_{\mu_l}[S^2(t,x)(1-h_N(S(t,x)))].
$$

The function $z^2 h_N(z)$ is bounded and continuous for fixed N. It, therefore follows from Theorem 2.1 that

$$
\lim_{t\to\infty}\int_{-\infty}^{\infty}z^2h_N(z)d\Phi_t(z)=\int_{-\infty}^{\infty}z^2h_N(z)\exp(-z^2/2\sigma^2)dz
$$

where $\Phi_t(z)$ is the distribution of $S(t, x)$ and $\sigma^2 = (2 \pi / I) r_{F(x)}(0)$.

The second term in (21) satisfies the estimate

$$
E_{\mu_1}[S^2(t,x)(1-h_N(S(t,x))] \leq E_{\mu_1}[S^2(t,x)\chi | S(t,x) | > N]
$$

where χ_A denotes the indicator function of the set A.

Denote

$$
\xi(t,x) = (n(t,x) - t/\bar{l})/\sqrt{t}.
$$

Then the set A_{kt} may be expressed as

$$
A_{kt} = \{x \colon k\epsilon \leq \xi(t,x) < (k+1)\epsilon\}.
$$

Applying the Schwartz inequality, Chebyshev's inequality and Lemma 3.3, we obtain

$$
E_{\mu_{t}}[S^{2}(t,x)\chi | S(t,x)| > N] = \sum_{k} \int_{[k\epsilon \leq \xi \leq (k+1)\epsilon]} [S_{k}(t,x)]^{2}\chi | S(t,x)| > N d\mu_{t}
$$

\n
$$
\leq \sum_{k} \left[\int_{[k\epsilon \leq \xi \leq (k+1)\epsilon]} d\mu_{t} \right]^{*} \cdot \left[\int_{[k\epsilon \leq \xi \leq (k+1)\epsilon]} [S_{k}(t,x)]^{*}\chi | S(t,x)| > N d\mu_{t} \right]^{*}
$$

\n
$$
\leq Q \cdot \sum_{k} \left[\frac{E_{\mu_{t}}(\xi(t,x))^{2s}}{(k\epsilon)^{2s}} \right]^{*} \cdot \left[\frac{E_{\mu_{t}}(S_{k}(t,x))^{2m}}{N^{2m-4}} \right]^{*}
$$

where s, $m > 0$ are integers, $m \ge 2$, $Q > 0$ is a constant, and

$$
\frac{E_{\mu_{1}}(\zeta(t,x))^{2s}}{(\widetilde{k}\varepsilon)^{2s}} = \begin{cases} \frac{E_{\mu_{1}}(\zeta(t,x))^{2s}}{(k\varepsilon)^{2s}} & k > 0\\ 1 & k = 0, -1\\ \frac{E_{\mu_{1}}(\zeta(t,x))^{2s}}{|(k+1)\varepsilon|^{2s}} & k < -1. \end{cases}
$$

By Lemma 3.2, the following inequality holds on A_{kt} :

$$
E_{\mu_1}(S_k(t,x))^{2m} \leq C_m \left[\frac{1}{l} + \frac{k\epsilon}{\sqrt{t}}\right]^m \leq C_m \left[\frac{1}{l} + \frac{\xi(t,x)}{\sqrt{t}}\right]^m.
$$

But

$$
\frac{n(t,x)}{t} = \frac{1}{l} + \frac{\xi(t,x)}{\sqrt{t}} < \frac{t/L_1}{t} = \frac{1}{L_1}
$$

where L_1 is such that $l(x) \ge L_1 > 0$. Therefore,

(23)
$$
E_{\mu_t}(S_k(t,x))^{2m} \leq C_m \frac{1}{L_1^m}.
$$

It follows from (18) and Lemma 3.3 that $\xi(t, x)$ has finite and bounded moments of any order with respect to t. Thus, setting $s \ge 2$ and $m \ge 3$ in (21) and taking account of (23), we see that for all sufficiently large t

$$
E_{\mu i}(S^2(t, x) \cdot \chi \big| S(t, x) \big| \le N \le \tilde{Q}/N
$$

where $\tilde{Q} > 0$ is a constant.

It now follows from (21) that

$$
\overline{\lim_{t\to\infty}}\left|E_{\mu_1}(S^2(t,x))-\int_{-\infty}^{\infty}z^2h_N(z)\exp(-z^2/2\sigma^2)dz\right|\leqq\tilde{Q}/N
$$

and, since N is arbitrary,

$$
\lim_{t\to\infty} E_{\mu t}(S^2(t,x))=\sigma^2.
$$

Since (20) is valid for any $\varepsilon > 0$, we have

$$
\lim_{t\to\infty} E_{\mu_1}\left(\frac{D^2(t,x)}{t}\right)=\sigma^2.
$$

The theorem now follows from (19).

REFERENCES

1. S. N. Bernstein, *Sur l'dxtension du thdordme limite du calcul des probabilitds aux sommes de quantitids ddpendantes,* Math. Ann. 97 (1926), 1-59.

2. R. Bowen, *Markov partitions for axiom A diffeomorphisms,* Amer. J. Math. 92 (1970), 725-747.

3. R. Bowen, *Symbolic dynamics for hyperbolic flows* (to appear).

4. W. Feller, *An introduction to probability theory and its applications,* Vol. 1, New York.

5. B. M. Gurevi6.. The *structure of increasing decompositions for special flows,* Theor. Probability Appl. 10 (1965), 627-654, MR 35 $\#$ 3034.

6. I. A. Ibragimov, *Some limit theorems for stationary processes,* Theor. Probablity Appl. **7** (1962), 349-382.

7. V. P. Leonov, *On the dispersion of time-dependent means of a stationary stochastic process,* Theor. Probability, Appl. 6 (1961), 87-93.

8. W. Parry, *Intrinsic Markov chains,* Trans, Amer. Math. Soc. 112 (1964), 55-66.

9. M. Rather, *Central limit theorem for Anosov flows on three-dimensional manifolds,* Soviet Math. Dokl. 10 (1969).

10. M. Ratner, *Invariant measure with respect to an Anosov flows on a three-dimensional manifold,* Soviet Math. Dokl. 10 (1969).

11. M. Ratner, *Markov partitions for Anosov flows on n-dimensional manifolds* (to appear).

12. Y. G. Sinai, *The central limit theorem for geodesic flows on manifolds of constant negative curvature,* Soviet Math. Dokl. 1 (1960), 938-987.

13. Y. G. Sinai, *Markov partitions and C-diffeomorphisms,* Functional. Anal. Appl. 2 (1968) , $64 - 89$.

14. Y. G. Sinai, *Gibbs measures in ergodic theory,* Uspehi Mat. Nauk (4) 27 (1972), 21-63.

INSTITUTE OF MATHEMATICS

THE HEBREW UNIVERSITY OF JERUSALEM JERUSALEM, ISRAEL